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Approximating Traveling Salesman Problem:
The Rest of the Story

A tour is a path that starts at a node, visits every
other node exactly once, and returns to the
starting node.  The problem TSP is to find the
shortest tour in an undirected, weighted  graph
G.

The professor showed that unless P = NP, there
is no e-approximation scheme for TSP.  This
means that no polynomial algorithm can
guarantee to come within 1,000 times of the
shortest tour.

Today we will give approximation schemes
when the triangle inequality is satisfied: 
dik # dij + djk for all nodes i, j, and k.

From now on, we assume the triangle inequality.
You should point out when I use it.
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For a graph G, let c(G) be the sum of the lengths
of the weights of the lengths of G.  For a tour t ,
let c(t ) be the sum of the edge lengths of the
edges of t .

Lemma: For an Eulerian graph G, there is a tour
t  with c(t) # c(G).

Proof: We can find a walk w which traverses
every edge exactly once and has length c(G).  w
visits every node at least once, but does not
qualify as a tour because it may visit a node
more than once.  

We can modify w by bypassing already seen
nodes.  This way we get a tour having weight at
most c(G).
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The Tree Algorithm for Approximating TSP

1. Find a minimum spanning tree T for the
graph.

2. Form a multigraph G by taking two copies of
every edge in T.

3. Find a Eulerian walk w in G and, by
bypassing already seen edges, form a tour t .



4

Theorem: The tree algorithm is a
1-approximation algorithm for TSP.  That is, if t
is the tour produced and t * is the optimal tour,
then c(t) # 2 c(t *).

Proof: G, having two copies of every edge, is
Eulerian, so there is an Eulerian walk.  The
Lemma applies and we need to show only that
c(G) # 2 c(t *).  Because c(G) = 2 c(T), what we
need to show is 2 c(T) # 2 c(t *).

The length of a tour is an upper bound for the
length of a minimum spanning tree.  This is
because starting with any tour, the deletion of
any edge yields a spanning tree.  Therefore, no
minimum spanning tree has total length more
than c(t *).  So, c(T) # c(t *).
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Christofides’ ½-Approximation Algorithm
for TSP

This approximation algorithm requires an
algorithm for minimum-weight non-bipartite
matching.  Such an algorithm, when given a
graph with an even number of nodes, finds a
perfect matching of minimal weight.  There is
an O(|V|4) algorithm for this type of matching.
For a reference, see §11.3 of Combinatorial
Optimization: Algorithms and Complexity by
Papadimitriou and Steiglitz.

Even though we have not covered this, I am
covering this approximation algorithm because
of its beauty and simplicity.
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Christofides’ Algorithm

1. Find a minimum spanning tree T.
2. Among those nodes with odd degree in T,

find a perfect matching M.  Form the
multigraph G by combining the edges of tree
T and matching M.

3. Find a Eulerian walk w in G and, by
bypassing already seen edges, form a tour t .

Note that there will be an even number of nodes
having odd degree in T.  This is because the
handshaking lemma says that the sum of all
degrees in a graph is even.  

G will be Eulerian; i.e., all nodes will have even
degree so we can find a Eulerian walk.
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Theorem: Christofides’ algorithm is a
½-approximation algorithm for TSP.

Proof: Let t  be the returned tour and let t * be the
optimal tour.  We wish to show that
c(t) # (3/2) c(t *).

Graph G is made up of tree T and matching M
so we have c(t) # c(G) = C(T) + C(M).  The
inequality comes from the first lemma.

As before, any tour is an upper-bound on a
minimum spanning tree, so c(T) # c(t *).
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Let {t1, t2, ..., t2m} be the odd-degree nodes of T
in the order they appear in t *.  Consider these
two matchings of t1, ..., t2m.

M1 = {(t1, t2), (t3, t4), ..., (t2m-1, t2m)}
M2 = {(t2, t3), (t4, t5), ..., (t2m, t1)}

We must have c(t *) $ c(M1) + c(M2).  M1cM2

forms a tour of t1, ..., t2m and this tour can be
formed from t * by deleting all other nodes.  We
get the above inequality.  Because M is the
matching of minimal weight, c(t *) $ 2 c(M) or
c(M) # c(t *)/2.  Combining this with the
previous inequalities gives us c(t) # (3/2) c(t *).



9

Approximating MAX-CUT

In MAX-CUT, we are given an undirected graph
and are asked for a partition of the nodes.  The
number of edges crossing the partition should be
as large as possible.  The recognition version of
MAX-CUT is NP-Complete.

Consider the following heuristic: Start with any
partition, and as long as you can move a node
from one side to the other and improve the cut,
do so.  When moving a single node will not
improve the cut, stop.
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Theorem: The above scheme is a
½-approximation algorithm for MAX-CUT. 
That is, the returned cut is at least half the size
of the optimal cut.

Proof: Divide V into disjoint sets V1, V2, V3 and
V4 such that the returned partition is
(V1cV2, V3cV4) but the optimal partition is
(V1cV3, V2cV4).  

For i and j between 1 and 4, let eij be the number
of edges between Vi and Vj.  Consider a node in
V1.  It’s edges to nodes in V1cV2 is
outnumbered by it’s edges to V3cV4. 
Otherwise, migrating this node across the cut
would improve our situation.  Making the same
analysis for every node in V1, we get
2 e11 + e12 # e13 + e14 or 

e12 # e13 + e14.

Similar considerations give
e12 # e23 + e24
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e34 # e23 + e13

e34 # e14 + e24

Add up the four inequalities and divide by 2. 
Add the inequality 

e14 + e23 # e14 + e23 + e13 + e24

and , we obtain
e12 + e34 + e14 + e23# 2(e13 + e14 + e23 + e24).

e12 + e34 + e14 + e23 is the size of the optimal cut
and e13 + e14 + e23 + e24 is the size of the returned
cut.  This shows that the returned cut is at least
half of the optimum.


