Approximating Traveling Salesman Problem:
The Rest of the Story

A tour isapath that starts at a node, visits every
other node exactly once, and returnsto the
starting node. The problem TSP isto find the
shortest tour in an undirected, weighted graph
G.

The professor showed that unless P = NP, there
IS N0 e-gpproximation scheme for TSP. This
means that no polynomial algorithm can
guarantee to come within 1,000 times of the
shortest tour.

Today we will give approximation schemes
when the triangle inequality is satisfied:
d, # d; + d, for all nodesi, J, and k.

From now on, we assume the triangle inequality.
Y ou should point out when | useit.

1



For agraph G, let ¢(G) be the sum of the lengths
of the weights of the lengths of G. For atourt,
let c(t) be the sum of the edge lengths of the
edgesof t.

L emma: For an Eulerian graph G, thereisatour
t withc(t) # c(G).

Proof: We can find awalk w which traverses
every edge exactly once and has length ¢(G). w
visits every node at least once, but does not
gualify as atour because it may visit anode
more than once.

We can modify w by bypassing already seen
nodes. Thisway we get atour having weight at
most ¢c(G).



TheTreeAlgorithm for Approximating TSP

1. Find aminimum spanning tree T for the
graph.

2. Form amultigraph G by taking two copies of
every edgeinT.

3. Find aEulerian walk w in G and, by
bypassing already seen edges, form atour t.



Theorem: Thetree agorithmisa
1-approximation algorithm for TSP. That is, if t
is the tour produced and t” is the optimal tour,
thenc(t) # 2 c(t").

Proof: G, having two copies of every edge, is
Eulerian, so thereisan Eulerian walk. The
Lemma applies and we need to show only that
c(G) # 2c(t’). Becausec(G) =2 c(T), what we
need to show is2 ¢(T) # 2 c(t").

The length of atour is an upper bound for the
length of a minimum spanning tree. Thisis
because starting with any tour, the deletion of
any edge yields a spanning tree. Therefore, no
minimum spanning tree hastotal length more
than c(t”). So, c(T) # c(t").



Christofides ¥>Approximation Algorithm
for TSP

This approximation algorithm requires an
algorithm for minimum-weight non-bipartite
matching. Such an algorithm, when given a
graph with an even number of nodes, finds a
perfect matching of minimal weight. Thereis
an O(|V[*) algorithm for this type of matching.
For areference, see §811.3 of Combinatorial
Optimization: Algorithms and Complexity by
Papadimitriou and Steiglitz.

Even though we have not covered this, | am
covering this approximation algorithm because
of its beauty and simplicity.



Christofides Algorithm

1. Find aminimum spanning tree T.

2. Among those nodes with odd degreein T,
find a perfect matching M. Formthe
multigraph G by combining the edges of tree
T and matching M.

3. Find aEulerian walk w in G and, by
bypassing already seen edges, form atour t.

Note that there will be an even number of nodes
having odd degreein T. Thisis because the
handshaking lemma says that the sum of all
degreesin agraph is even.

G will be Eulerian: 1.e., al nodes will have even
degree so we can find a Eulerian walk.



Theorem: Christofides' algorithmisa
Y>-approximation algorithm for TSP.

Proof: Lett bethereturned tour and let t™ be the
optimal tour. We wish to show that
c(t) # (3/2) o(t).

Graph G ismade up of tree T and matching M
so we have c(t) # ¢(G) = C(T) + C(M). The
Inequality comes from the first lemma.

As before, any tour is an upper-bound on a
minimum spanning tree, so ¢(T) # c(t").



Let {t,t, ..., t,,} betheodd-degree nodesof T
in the order they appear int". Consider these
two matchingsof t,, ..., t ..

M, ={(t,, t), (tz, ts), .y (toa, L)}
M, ={(ts ta), (ts ts), ..y (Lo, T}

We must have c(t’) $ c(M,) + c(M,). M.cM,
formsatour of t,, ..., t,,, and this tour can be
formed fromt™ by deleting all other nodes. We
get the above inequality. Because M isthe
matching of minimal weight, c(t’) $ 2 ¢(M) or
c(M) # c(t")/2. Combining thiswith the
previous inequalities gives us c(t) # (3/2) c(t").



Approximating MAX-CUT

In MAX-CUT, we are given an undirected graph
and are asked for a partition of the nodes. The
number of edges crossing the partition should be
as large as possible. The recognition version of
MAX-CUT is NP-Complete.

Consider the following heuristic: Start with any
partition, and as long as you can move a hode
from one side to the other and improve the cut,
do so. When moving a single node will not
Improve the cut, stop.



Theorem: The above schemeisa
Yo-approximation algorithm for MAX-CUT.
That Is, the returned cut is at least half the size
of the optimal cut.

Proof: Divide V into digoint setsV, V,, V, and
V, such that the returned partition is

(V,cV,, ViV, but the optimal partitionis
(V,.cV, V,CcV)).

For i and | between 1 and 4, let g, be the number
of edges between V; and V;. Consider anode in
V,. It'sedgesto nodesinV,cV,is
outnumbered by it’sedgesto V,cV,.
Otherwise, migrating this node across the cut
would improve our situation. Making the same
analysis for every node in V , we get
2e,te,Heszte,or

e, #e3te,
Similar considerations give

€, # €3+ €y

10



€, # €3+ €3

ey H#eyte,
Add up the four inequalities and divide by 2.
Add the inequality

eytestfe,testestey
and A/ A0V we obtain
ot Eyteyte#H2e;re,+estey)

e, + e, + e, + e,isthesize of the optimal cut
and e, + e, + e, + e, isthe size of the returned
cut. Thisshowsthat the returned cut is at least
half of the optimum.

11



